2,984 research outputs found

    Highly Mutable Linker Regions Regulate HIV-1 Rev Function and Stability.

    Get PDF
    HIV-1 Rev is an essential viral regulatory protein that facilitates the nuclear export of intron-containing viral mRNAs. It is organized into structured, functionally well-characterized motifs joined by less understood linker regions. Our recent competitive deep mutational scanning study confirmed many known constraints in Rev's established motifs, but also identified positions of mutational plasticity, most notably in surrounding linker regions. Here, we probe the mutational limits of these linkers by testing the activities of multiple truncation and mass substitution mutations. We find that these regions possess previously unknown structural, functional or regulatory roles, not apparent from systematic point mutational approaches. Specifically, the N- and C-termini of Rev contribute to protein stability; mutations in a turn that connects the two main helices of Rev have different effects in different contexts; and a linker region which connects the second helix of Rev to its nuclear export sequence has structural requirements for function. Thus, Rev function extends beyond its characterized motifs, and is tuned by determinants within seemingly plastic portions of its sequence. Additionally, Rev's ability to tolerate many of these massive truncations and substitutions illustrates the overall mutational and functional robustness inherent in this viral protein

    Anisotropic constitutive modeling for nickel base single crystal superalloy Rene N4 at 982 C

    Get PDF
    A back stress/drag stress constitutive model based on a crystallographic approach to model single crystal anisotropy is presented. Experimental results demonstrated the need for the back stress variable in the inelastic flow equations. Experimental findings suggested that back stress is orientation dependent and controls both strain hardening and recovery characteristics. Due to the observed stable fatigue loops at 1800 F, drag stress is considered constant for this temperature. The constitutive model operated with constraints determined only from tensile data was extensively tested from simple tensile and fatigue to complicated strain hold tests. The model predicted very well under those conditions

    Characterization of the domain chaos convection state by the largest Lyapunov exponent

    Get PDF
    Using numerical integrations of the Boussinesq equations in rotating cylindrical domains with realistic boundary conditions, we have computed the value of the largest Lyapunov exponent lambda1 for a variety of aspect ratios and driving strengths. We study in particular the domain chaos state, which bifurcates supercritically from the conducting fluid state and involves extended propagating fronts as well as point defects. We compare our results with those from Egolf et al., [Nature 404, 733 (2000)], who suggested that the value of lambda1 for the spiral defect chaos state of a convecting fluid was determined primarily by bursts of instability arising from short-lived, spatially localized dislocation nucleation events. We also show that the quantity lambda1 is not intensive for aspect ratios Gamma over the range 20<Gamma<40 and that the scaling exponent of lambda1 near onset is consistent with the value predicted by the amplitude equation formalism

    ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids

    Full text link
    We introduce an unsupervised feature learning approach that embeds 3D shape information into a single-view image representation. The main idea is a self-supervised training objective that, given only a single 2D image, requires all unseen views of the object to be predictable from learned features. We implement this idea as an encoder-decoder convolutional neural network. The network maps an input image of an unknown category and unknown viewpoint to a latent space, from which a deconvolutional decoder can best "lift" the image to its complete viewgrid showing the object from all viewing angles. Our class-agnostic training procedure encourages the representation to capture fundamental shape primitives and semantic regularities in a data-driven manner---without manual semantic labels. Our results on two widely-used shape datasets show 1) our approach successfully learns to perform "mental rotation" even for objects unseen during training, and 2) the learned latent space is a powerful representation for object recognition, outperforming several existing unsupervised feature learning methods.Comment: To appear at ECCV 201

    Feature Detection and Orientation Tuning in the Drosophila Central Brain

    Get PDF

    Origin and evolution of the zodiacal dust cloud

    Get PDF
    The astrophysical importance of the zodiacal cloud became more apparent. The most useful source of information on the structure of the zodiacal cloud is the Infrared Astronomical Satellite (IRAS) observations. A substantial fraction of the extensive IRAS data set was analyzed. Also, a numerical model was developed (SIMUL) that allows to calculate the distribution of night-sky brightness that would be produced by any particular distribution of dust particle orbits. This model includes the effects of orbital perturbations by both the planets and solar radiation, it reproduces the exact viewing geometry of the IRAS telescope, and allows for the eccentricity of the Earth's orbit. SIMUL now is used to model not just the solar system dust bands discovered by IRAS but the whole zodiacal cloud

    Causal Confusion in Imitation Learning

    Get PDF

    Failure of Sandwich Composite Structure Containing Face-sheet/Core Disbonds – An Experimental Study

    Get PDF
    Honeycomb sandwich specimens containing manufactured circular disbonds were loaded to failure in bending. Particular emphasis was placed on accurately identifying the occurrence of disbond buckling and growth initiation, as these two events are difficult to monitor. The test results are presented and then the methods used to identify disbond buckling and growth initiation are described. The method of identifying disbond buckling was very successful. The method of identifying growth initiation was largely successful but improvements are suggested. Finally, conclusions are presented and recommendations made regarding design and repair considerations. The study was performed to provide data against which predictive models can be validated, filling a large gap in the published literature regarding experimental results for disbonded sandwich structure
    • …
    corecore